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Abstract. It is shown that the two characteristic interaction times 71(w) and 72(w) for classical electro-
magnetic waves with an arbitrarily shaped barrier are not independent quantities, but are connected by
Kramers-Kronig relations for the real and imaginary components of a causal magnitude. The corresponding
macroscopic sum rule for the complex time is also derived. An analogy between the interaction time problem
and an electrical circuit with capacitive and conducting frequency dependent components is established.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation — 42.25.-p Wave optics

In the theory of the traversal time problem of electrons
and electromagnetic waves (EMW), two characteristic
times have arisen in many approaches [1-5]. Both times
are the real and imaginary components of a complex quan-
tity. We know that any experiment must measure a real
quantity, and so the outcome of any measurement of the
interaction time must be a real quantity, possibly involving
the two characteristic times. These two times are related
as a consequence of the analytical properties of the com-
plex quantity whose real and imaginary components are
the two characteristic times. In this paper we would like
to study the relationship between these two characteristic
times.

The concept of a complex interaction time arose in
the Feynman path-integral approach [6] when Sokolovski
and Baskin [7] applied this kinematic approach to quan-
tum mechanics by a formal generalization of the classi-
cal time concept to the traversal time in a finite region.
Leavens and Aers [8] reinterpreted the oscillatory ampli-
tude approach, proposed by Biittiker and Landauer [9,10],
in terms of a complex time. Jauho and Jonson [11] ex-
tended in a similar direction the time-modulated barrier
approach, also proposed by Biittiker and Landauer [12].
Fertig [13] arrived at the concept of a complex time and
derived the complex distribution of traversal times for a
particle tunneling through a rectangular barrier. Recently,
Balcou and Dutriaux [14] experimentally investigated the
tunneling times associated with frustrated total internal
reflection of light. They have shown that the two charac-
teristic times correspond, respectively, to the spatial and
angular shifts of the beam.
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Gasparian et al. have shown [15,16], with the help of
the Green’s function formalism, that the two character-
istic times appearing in the Larmor clock approach for
electrons correspond to the real and imaginary compo-
nents of a single quantity, defined as an integral of the
Green’s function G(z, z; E) for an open and finite system
with length L
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where t is the complex amplitude of transmission, r and
7’ are the reflection amplitudes from the left and from the
right, respectively. They also obtained [4], with the Fara-
day rotation scheme, a similar result to equation (1) for
the characteristic interaction time of an EMW. The Fara-
day rotation is analogous to the magnetic clock and plays
for light the same role as the Larmor precession for elec-
trons [1,17]. The emerging EMW is elliptically polarized
and the major axis of the ellipse is rotated with respect
to the original direction of polarization. All relevant infor-
mation about both the angle of rotation and the degree of
ellipticity is contained in the complex angle 0

i t .
0=—3 lnt—i:01—102. (2)

Making use of the expression for the complex amplitude of
transmission ¢ty = T4 /2 exp{ity+ }, one can easily check
that the real part of the angle 6 is equal to:

Yy — Y-
:+T. (3)

This corresponds to the Faraday rotation, which results
from the phase difference between left and right polarized
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light. The imaginary part of 8 is:

T
In =+

1
= — 4
02 4 T ) ( )

and corresponds to the ratio of ellipticity [4]. It is straight-
forward to show, using the explicit expression of the co-
efficient of transmission T4 for the dielectric slab (see,
e.g. [18], Ax =ny/ny and AL =wnyL/c)

1- A2 2
Ti:{l—l—( AL sinAi)} ,

and equation (4) that, depending of the values of A and
A_, we may observe, during one period [rm, 7(m + 1)] (m
is integer number) linearly, circularly, and elliptically po-
larized light, which at mm rotates in a clockwise direction
and later changes the direction of rotation.

Both effects mentioned above are quantified through
the complex angle # which depends on the time the EMW
spends in the slab. This motivated us to associate a com-
plex interaction time of the light in the region with mag-
netic field with this complex magnitude. We arrived at a
complex characteristic interaction time 7 for a EMW in
the slab which can be written in terms of derivatives with
respect to frequency as [4]:

()
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) = i { } = 71(w) —inW). (6)

As was shown by Ruiz et al. [19] this is a general ex-
pression for the interaction time of an EMW with a one-
dimensional region with an arbitrary index of refraction
distribution, independently of the model considered. It can
be rewritten in terms of the GF for photons analogously
to equation (1), because all the general properties of the
GF formalism for electrons which lead us to equation (1)
are valid for any wave (sound or electromagnetic), when-
ever its propagation through a medium is described by a
differential equation of second order [20].

It is the purpose of this work to discuss the properties
of the EMW interaction time arising from its complex
nature and to show that the frequency dependence of the
real and imaginary parts of the complex interaction time
are connected by the Kramers-Kronig relations. We also
establish an analogy with an electrical circuit equivalent.

For the dielectric slab equation (6) leads us to the fol-
lowing expressions for the two time components [4]:

s T sin 2A
M) =g {0+ -2 0
and
. Tr1 — A? sin 24
) = Gt {0 )T
.QA
4{1+A%S%A } (8)
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Fig. 1. The two components of the EMW interaction time
7$!(w) and 75! (w) for a dielectric slab as a function of the inci-
dent frequency. The values of the parameters are no = 1 and

n1:2.

where 75! = L/v is the time that light with velocity

v = ¢/ng would take to cross the slab, when reflection
in the boundaries is not important, A = w7g', A = ny /no,
ng is the refraction index of the slab and n; the refraction
index of the two semi-infinite media outside the slab. T
is the transmission amplitude for the slab in the absence
of a magnetic field and is given by equation (5) with the
replacements A4+ — A and Ay — A.

Note that the first term on the RHS of equations (7,
8) which is proportional to the imaginary and real parts
of 0Int/0w mainly contains information about the region
of the slab. Most of the information about the boundary
is provided by the term proportional to the reflection am-
plitude, r/w, and is of the order of the wavelength A over
the length of the system L. Thus, it becomes important
for low energies and/or short systems, as can be noted
in Figure 1, where we present 71(w) and m(w) given by
equations (7, 8), as a function of A = wry for the first
4 periods.

71(w) is proportional to the integrated density of states
(DOS) [15,16]. It is always positive and reproduces the
characteristic features of the coefficient of transmission 7',
i.e. it has a maximum at Ay = wm, where m is integer
number (see Fig. 1). The sharpness and the breadth of the
peaks depend on the ratio A = ny/ng. At Ay = 7/24+7m
the DOS has a minimum in accordance with equation (7).
As it was pointed out in reference [21], a calculation of
the DOS without taking into account the second term in
equation (6) yields a wrong result without oscillation term.
Such oscillations in DOS and the partial DOS should in-
fluence the conduction properties of sufficiently small con-
ductors [22] and, as was shown in reference [23] similar
correction terms in two-dimensional mesoscopic conduc-
tors are needed to obtain precise current conservation.

As for the imaginary part 7o, we can see from Figure 1
that it is positive in the range 2rm < A < As 4 27m and
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negative in the range As + 2rm < A < 7 + 27m, where
the points As are the solutions of the equation

1 — A% sin A,
A -
ST A,

=0. (9)

If r/w <« 1 then we approximately have Ay ~ 7/2 (from
now on we will consider only the interval [0, ]). In the
same limit, 75!(w) reaches both its maximum and mini-
mum values. Its maximum is equal to

s T0 1—A2 2
7_21(('(j)|maux = 5 <1+A2>

and occurs at Az = arctan2A/(1+ A?). The minimum of
T2(w) appears at m — As:

s T0 1—A2 2
7'21(“1)|min:_5 <1+A2> :

We would like to emphasize that the change in sign of 5
(Fig. 1) is just related to a change in the direction of rota-
tion from clockwise to counterclockwise of the transmitted
wave.

Note that the 75!(w) for EMW interaction time with a
dielectric slab is similar to Biittiker’s time (in the Larmor
clock approach), which tends to align the spins parallel to
the magnetic field in order to minimize its energy [1]. For
energies F of incident electrons larger than the height V
of a rectangular barrier, Biittiker’s time changes its sign
from positive to negative and so on, which is only due to
the fact that the direction of the spins in the transmitted
wave can be parallel or antiparallel to the magnetic field.

It is known that the frequency dependence of the real
and imaginary parts of certain complex physical quan-
tities are interrelated by the Kramers-Kronig relations,
e.g., the real (dispersive) part of the complex dielectric
function e(w) to its imaginary (dissipative) part, the fre-
quency dependent real and imaginary parts of an electrical
impedance, etc. [24]. The derivation of these relations is
based on the fulfillment of four general conditions of the
system: causality, linearity, stability and that the value of
the physical quantity considered is assumed to be finite at
all frequencies, including w — 0 and w — oo. If these four
conditions are satisfied, the derivation of Kramers-Kronig
relations is purely a mathematical operation which does
not reflect any other physical properties or conditions of
the system. These integral relations are very general and
have been used in the theory of classical electrodynamics,
particle physics and solid state physics as well as in the
analysis of electrical circuits and electrochemical systems
(see, e.g. [25]).

As Thouless has shown [26], a dispersion relation ex-
ists between the length of localization and the DOS which
was rewritten in reference [27] in the form of linear dis-
persion relations between the real and imaginary parts of
Int, i.e., the logarithm of the complex transmission am-
plitude. Using this dispersion relation it is straightforward
to show that the complex interaction time, 7(w) (6), is an
analytical function of frequency in the upper half of the

(10)

(11)
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complex w-plane (see e.g. [24]). In other words the four
conditions mentioned above are fulfilled for the complex
time (6) and the following relationship between the 7(w)
and its complex conjugate 7*(w) holds on the real axis
(see Eq. (6)):
rw) = 7 (~w) (12)
which means that the complex interaction time 7(w) has
the following properties:
T (w) =1 (-w), n(w) = —n(-w). (13)
Therefore, the real part 71(w) is an even function of fre-
quency and can have a finite value at zero frequency (for
the slab we have 751(0) = L/vA). As for the imaginary
part 72(w), it is an odd function and must vanish in the
limit of zero frequency: 72(0) = 0. These conditions imply
that the real and imaginary components of the time like-
wise obey Kramers-Kronig integral relations, and so we
may write

25 [ ym2(y)
2w > 71(y) — 7o
T2 (w) = _?P/o Wdy (15)
where P means principal part and 79 = Ln/c, i.e. the

crossing time in the dielectric system, without any bound-
ary.

In particular, if we make w = 0 in equation (15), we
arrive at so called “macroscopic sum rule” for the complex
interaction time

2 oo
71(0) = 79 + —/ 72(y) dy
™ Jo Y

(16)

Thus we see from equation (16) that in general if no
imaginary component 75 (w) exists at any frequency, then
71 = 7o always holds. In the case of the interaction time
in the dielectric slab, the integral relations (14-16), which
are the central result of our work, can be verified, using
the explicit expressions (7, 8) (see, e.g., [28]).

Note that the validity of the Kramers-Kronig relations
for the complex interaction time has a rather deep signif-
icance because it may be demonstrated that these condi-
tions are a direct result of the causal nature of physical sys-
tems by which the response to a stimulus never precedes
the stimulus. At this point it is worth mentioning that
the experiments with, e.g., undersized waveguides [29,30]
or periodic dielectric heterostrucures [31,32], where the
so called “superluminal velocities” have been observed for
the barrier tunneling time need to be interpreted carefully.

It is known that for the description of the Debye re-
laxation behavior it is possible to replace the complex di-
electrics by an electric circuit equivalent. Because of the
close resemblance to this class of linear response physi-
cal phenomena, it is possible to map the interaction time
problem by a circuit equivalent consisting of a frequency
dependent capacitance C(w) and a frequency dependent
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Fig. 2. Schematic representation of the equivalent circuit with
capacitive C(w) and conducting G(w) frequency dependent
components for the EMW interaction time.
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Fig. 3. Complex plane interaction time diagram for a dielectric
slab. The arrow indicates the direction of increasing frequency.

conductance G(w), as shown in Figure 2. (see, e.g. [25]).
This means that the natural way of describing the bar-
rier interaction time problem is via two parallel channels
which correspond to two mechanisms for the same physi-
cal phenomenon.

Let us represent the complex time components 73! (w),
equation (7), and 75'(w), equation (8), in the complex
plane. They are plotted against one another in Figure 3.
We see that for small frequencies we have a skewed arc.
With increasing frequency, the influence of the second
terms in equations (7, 8), due to boundary effects, be-
comes less important and the curve, in the limit w — oo
approximates to an ideal circle.

Note that in the case of the Debye dispersion relations
for the complex dielectric function e(w), an ideal semi-
circle in the complex plane means that we deal with a
single relaxation time. In our case it means that for high
frequency/or short wavelength we deal with the classical
crossing time, taking into account multiple reflection in
the slab [19]. It is not difficult to show that in a such limit
we have

()7 + {Tfl - [;—i (1+4%) - r} }2 =2 (7)
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which is the equation of a circle in the complex plane of
—75" and 73! with the centre {7§'/2A (1+ A%) —r,0} and
with a radius given by

o (1-43)°

_T 1
"TUA 1y A2 (18)

We showed that the two components, the real part 71 (w)
and the imaginary part 72(w), of the complex barrier inter-
action time for EMW are not entirely independent quan-
tities, but connected by Kramers-Kronig relations.

The barrier interaction time problem for EMW in a
slab can be mapped to a circuit equivalent consisting of a
parallel combination of a frequency dependent capacitance
C(w) and a frequency dependent conductance G(w) in a
network. There are two distinct times: the first one due to
the propagation of the EMW in the real (dispersive) part,
€1 of the complex dielectric function €, and the second one
due to the imaginary (dissipative) part, €3 of the complex
dielectric function €. Note that in this paper the validity
of the Kramers-Kronig relations was only checked ana-
lytically for EMW, but in general this implies that they
are also valid for all quantum particles represented by a
differential equation of second order as indicated by the
numerical calculations for the complex tunneling time for
electrons.
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